$ module load openmpi316
$ mpicxx -I/lfs/usrhome/oth/rnintern/scratch/MPI_Comparison/boost/install_dir/include program.cc ../boost/install_dir/lib/libboost_mpi.a ../boost/install_dir/lib/libboost_serialization.a -o output
(Assuming your parent directory contains boost library files)
Done with the compilation!
$ /lfs/sware/openmpi316/bin/mpirun -np 64 -hostfile $PBS_NODEFILE $PBS_O_WORKDIR/output /lfs1/usrscratch/phd/cs16d003/11suiteDSL/weightedGraphs/sinaweibowt.txt > $PBS_O_WORKDIR/output_logfile_name.txt
(The CS16d003 contains all the graphs which we are using)
Done with running!
#!/bin/bash
#PBS -o logfile.log
#PBS -e errorfile_slash.err
#PBS -l walltime=00:60:00
#PBS -l select=2:ncpus=32
#PBS -q rupesh_gpuq
module load openmpi316
#tpdir=`echo $PBS_JOBID | cut -f 1 -d .`
#tempdir=$HOME/scratch/job$tpdir
#mkdir -p $tempdir
#cd $tempdir
#Compilation not needed already done
#mpicxx -I/lfs/usrhome/oth/rnintern/scratch/MPI_Comparison/boost/install_dir/include triangle_count_dsl.cc ../boost/install_dir/lib/libboost_mpi.a ../boost/install_dir/lib/libboost_serialization.a -o tc_exe
#Execution
/lfs/sware/openmpi316/bin/mpirun -np 64 -hostfile $PBS_NODEFILE $PBS_O_WORKDIR/sssp_exe /lfs1/usrscratch/phd/cs16d003/11suiteDSL/weightedGraphs/sinaweibowt.txt > $PBS_O_WORKDIR/output_sinaweibo.txt
#mv ../job$tpdir $PBS_O_WORKDIR/.
int main(int argc, char* argv[])
{
mpi::environment env(argc, argv);
graph G1(argv[1]);
int src=0;
int* dist;
Compute_SSSP(G1,dist,src);
return 0;
}
$ qsub script.cmd : To run/subscribe script on specified queue
$ qstat : Gives the status of scripts running
$ qdel <processid> : Removes script from queue
Branches | Build Status | Generation | |
---|---|---|---|
Working | //TODO | ||
CUDA | //TODO | ||
OMP | //TODO | ||
MPI | //TODO |
# Step 1. Clone the repo from our Main branch
git clone -b WorkingBranch https://github.com/nibeditabh/GraphDSL.git
# Step 2. Create a StarPlat compiler
cd GraphDSL/src
make
# Step 3. Generate files from DSL files.
./StarPlat [-s|-d] -f <dsl.sp> -b [cuda|omp|mpi|acc]
#Example
./StarPlat -s -f ../graphcode/generated_cuda/sssp_dslV2 -b omp
-s for static and -d for dynamic
-b select the type of backend
-f the dsl file to input
# Step 4.0 Append the main function to the generated file .cu or .cc file
# Below is the E.g. how to compile SSSP file after generation
# Additional equired files: graph.hpp libcuda.hxx present in one level up
# Step 4.1 Compile and run CUDA algorithm
nvcc -O3 -std=c++14 ../graphcode/generated_cuda/sssp_dslV2.cu -I .. -o ssspCuda.out
./ssspCuda.out ../dataset/inputfile.txt
# Step 4.2 Compile and run OMP algorithm
g++ -O3 -fopenmp -std=c++14 ../graphcode/generated_omp/sssp_dslV2.cu -I .. -o ssspOmp.out
./ssspOmp.out ../dataset/inputfile.txt
# Step 4.3 Compile and run MPI algorithm
mpcxx -fopenmp -std=c++14 ../graphcode/generated_mpi/sssp_dslV2.cu -I .. -I boost_1_74_0/ -o ssspMpi.out
./ssspMpi.out ../dataset/inputfile.txt
# Step 4.4 Compile and run ACC algorithm
pgc++ -std=c++14 ../graphcode/generated_OpenACC/sssp_dslV2.cu -I .. -o ssspAcc.out
./ssspAcc.out ../dataset/inputfile.txt
Graph DSL for basic graph algorithms
This project is funded by India's National Supercomputing Mission, whose timely funding and regular reviews are greatly appreciated.
The StarPlat codebase is made available for academic and non-commercial use. Commercial use of the code needs licensing. The interested may contact rupesh@cse.iitm.ac.in.